Neural Networks Laboratory

Neurons are the building blocks of behaviour

Our goal is to understand the neural activity contributing to perception and behaviour in the mammalian brain. Individual neurons are continuously bombarded with thousands of synaptic inputs which must integrate to generate an internal representation of the external environment. We investigate how the brain processes this sensory information by measuring the activity of neurons within the neocortex in vivo using a variety of techniques including two photon calcium imaging, somatic and dendritic patch-clamp recordings and optogenetics.

We are particularly interested in the activity of dendrites, which are the thin neural processes that receive the vast majority of the neuron’s synaptic input. Dendrites act as independent signalling units, integrating information according to complex computational rules. The dendritic integration of synaptic input, its modulation and influence on global brain function and behaviour is the focus on our research.

Through our work, we not only aim to reveal how sensory information is received, transformed and modulated in neurons, but also how this processing of synaptic input contributes to the overall neural network activity underlying behaviour.


Selected Publications

Palmer, L.M., Shai, A.S., Reeve, J.E., Anderson, H.L., Paulsen, O., Larkum, M.E. 2014. NMDA spikes enhance action potential generation during sensory input. Nature Neuroscience. 17(3). 383-390

Palmer, L.M. 2014. Dendritic integration in pyramidal neurons during network activity and disease. Brain Re. Bull. 103. 2-10.

Palmer, L.M.*, Schulz, J.M.*, Larkum, M.E. 2013. Addendum article: Layer-specific regulation of cortical neurons by interhemispheric inhibition. Communicative & Integrative Biology. 6:3. e23545-1 - e23545-5.

Palmer, L.M., Schulz, J.M., Murphy, S.M., Ledergerber, D., Murayama, M, Larkum, M.E. 2012. The cellular basis of GABAB-mediated interhemispheric inhibition. Science. 335. 989-993

Palmer, L.M., Murayama, M, Larkum, M.E. 2012. Inhibitory regulation of dendritic activity in vivo. Frontiers in Neural Circuits. 6. 1-10

Granato, A., Palmer, L.M., De Giorgio, A., Tavian, D., and Larkum, M.E. 2012. Early exposure to alcohol leads to a permanent impairment of dendritic excitability in neocortical pyramidal neurons. J. Neurosci. 32(4): 1377-1382

Palmer, L.M., Clark BA, Gründemann J., Roth A., Stuart G.J., Häusser M. 2010. Initiation of simple and complex spikes in cerebellar Purkinje cells. J Physiol. 15(588): 1709-17

Palmer, L.M. and Stuart G.J. 2009. Membrane potential changes in dendritic spines during action potentials and synaptic input. J. Neurosci. 29(21): 6897-903

Stuart, G.J. and Palmer, L.M. 2006. Imaging membrane potential in dendrites and axons of single neurons. Pflugers Archiv. 543(3): 403-10

Palmer, L.M. and Stuart, G.J. 2006.  Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26(6): 1854-63.


Murphy, S.M., Palmer, L.M., Nyffeler, T., Müri, R., Larkum, M.E. 2016. Transcranial Magnetic Stimulation (TMS) inhibits cortical dendrites. eLife. 5:e13598, 1-12.

Mayrhofer, J.M., Haiss, F., Hänni, D., Weber, S., Barrett, M.J., Ferrari, K., Maechler, P., Saab, A., Stobart, J., Wyss, M.T., Zuend, M., Johannssen, H., Osswald, H., Palmer, L.M., Revol, V., Schuh, C., Urban, C., Hall, A., Innerhofer, E., Larkum, M.E., Zeilhofer, H.U., Ziegler, U., and Weber, B. 2015. Design and performance of an ultra-flexible two-photon microscope for in vivo research. Biomedical Optics Express. 6(11): 4228-37.

 

A glimpse at our research

The modulation of sensory perception by the prefrontal cortex.

Epilepsy

The Florey's Epilepsy division is a world-leading centre for epilepsy research. The division has major groups at both the Florey’s Austin and Parkville campus. The group studies mechanisms that cause epilepsy from the level of cells to the function of the whole brain. We use technologies including advanced MRI and cutting edge cellular physiology techniques to allow us to understand genetic and acquired mechanisms that give rise to epilepsy. Together with our colleagues from The University of Melbourne and across Australia we are working towards finding a cure for epilepsy.



All Labs that operate in this Division

Epilepsy Cognition LaboratoryEpilepsy Neuroinformatics LaboratoryImaging and EpilepsyInnate Phagocytosis LaboratoryIon Channels and Human Diseases LaboratoryNeural Networks LaboratoryNeurophysiology of Excitable Networks LaboratoryPsychology and Experimental NeurophysiologySleep and CognitionTraumatic Brain Injury Laboratory