Quick Project Snapshot

Molecular mechanism of copper transporting ATPases

Copper ATPases are key members of P1B-type ATPases that pump heavy metal ions (Cu, Ag, Zn, Cd, Co, Pb) across cell membranes with energy derived from ATP hydrolysis. Copper ATPases pump Cu ions specifically and play vital roles in supplying essential copper to the required enzymes and in removing toxic or excess copper from cells. Mal-functions of human copper pumps ATP7A or ATP7B disrupt copper homeostasis and this is associated with fatal disorders including Menkes and Wilson diseases and with a number of neurodegenerative diseases including Alzheimer’s, Parkinson’s and motor neuron diseases.

Hundreds of mutations in ATP7A and ATP7B have been identified and many appear to be associated with disease states. However, the molecular consequences of most of these mutations are not known, primarily due to the complexity of these copper ATPases and to the lack of effective analytical approaches for functional analysis. Over the years, in vivo protein trafficking in response to varying copper levels and in vitro ATPase activity based on detection of inorganic phosphate product are the main functional assays. However, neither is able to distinguish the functional differences between most protein variants sensitively and reliably.

Starting with a copper ATPase from E. coli, we have recently developed robust assays for Cu ATPase activity and for the correlated vectorial copper transport function. The former employed 1H NMR detection of ATP hydrolysis directly and the latter detected Cu uptake by biomimetic cells of synthetic giant unilamellar vesicles (GUVs) with embedded Cu ATPases. These assays provide an unprecedented set of quantitative tools that, with quantitative copper probes, will explore the molecular mechanisms of copper ATPases. In particular, the two essential human copper pumps, ATP7A and ATP7B, will be targeted.


(1) Barnham, K. J.; Bush, A. I., Curr. Opin. Chem. Biol. 2008, 12, 222-8.

(2) Wijekoon, C.J.K.; Udagedara, S. R.; Knorr, K. L.;  Dimova, R.; Wedd, A. G.; Xiao, Z., J. Am. Chem. Soc. 2017, DOI: 10.1021/jacs.6b12921.



Dr Zhiguang Xiao

Neurochemistry of Metal Ions

Metal ions play vital roles in brain development and function. But they are also toxic and their mishandling in brain cells are associated with multiple neurodegenerative diseases.

My laboratory focuses on the biological inorganic chemistry of metal ions (Cu, Zn, Fe in particular) in neurodegeneration.

We aim for a molecular understanding of the functional roles of these neuro-metals in healthy brain and in disease states.

All Projects by this Lab

Molecular mechanism of copper transporting ATPasesBiological inorganic chemistry of copper in the early ubiquitination pathways


Scientists in the Neurodegeneration division interrogate how neurones live, die and can be rescued to improve brain function in degenerative conditions such as Parkinson’s and Motor Neuron Diseases. There is no effective treatment for Motor Neurone Disease and the incidence of Parkinson’s Disease is rising alarmingly in our aging community. Gene abnormalities, energy deprivation, toxic rubbish accumulation and inflammation all contribute to a toxic environment for brain cells. Our teams study these events in animal models and cultured cells, with a view to translating knowledge into new therapies for human patients.

All Labs that operate in this Division

Atomic Pathology LaboratoryCreutzfeldt Jakob Disease Clinical Research GroupMolecular Gerontology LaboratoryMotor Neurone Disease LaboratoryNational Dementia Diagnostics LaboratoryNeurochemistry of Metal IonsNeurogenesis and Neural Transplantation LaboratoryNeuropathology and Neurodegeneration LaboratoryNeuroproteomics and Metalloproteomics LaboratoryNeurotherapeutics LaboratoryParkinson's Disease LaboratoryPre-clinical Parkinson’s Disease Research LaboratoryPresynaptic Physiology Stem Cells and Neural Development LaboratorySteroid Neurobiology LaboratorySynaptic Neurobiology LaboratoryThe Australian Imaging Biomarker and Lifestyle Study (AIBL)